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SONAR PROJECTOR APPLICATIONS

m Requirehigh power and broadband
- Toaddressgeneral needsof Navy

m Consider PMN-driven projector
- Savesof butted ClasslV flextensional shells
= Array composed of multiple staves

m Projector arrayswithin tow body
- Fiberglassmetal structuressurround arrays

Radiated acoustic field from aflextensional array sonar projector in a 2x2 m cube of water
(upper half removed for viewing). An absorbing boundary condition effectively passes
sound out of the model with negligible reflection. Drive signals to each flextensional trans-
ducer are phased to project the principal beam out the |eft front face.

Projector Issues
m Need to exploreand understand:

= Nonlinear PMN drive behavior

- Broadband staveresponse

- 3D acoustical coupling between staves
- Effectsof tow body

- Overall design and integration

Why 3D Time-Domain Modeling?

m Exhaustive prototypetesting costs much morethan
numerical ssimulations

m Time-to-deployment iscritical
m Valuablefor test interpretation and planning

Modeling Justification

m PZFlex modeling software validated

« Havereasonable confidencein results
» l.e. appreciateuncertaintiesand limits

m Hardware makeslarge-scale modelsfeasible
- 24, 0r 8processor PCs
» parallel processing

m Greatest impact when modeling used at beginning of
design process
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Hom-Shankar constitutive model fitsto ~ NUWC measurements of Young's modulus D. 1.25 f/f, E. 2.16 f/f, F 2.6 f/f,
NUWC polarization and strain data at Y versuselectric field biasin PMN at vari-
0,6,9 ksl prestress, 20°C. oustemperatures. Flextensional shell mode shapesat principal resonances calculated in air. All frequencies

arewithin 1.5% of L ockheed M artin acceleromoter measur ements.

Displacement [mm]

0.00- Constitutive Data, M odel & Validation
0.01 @ NUWC measurementsof PMN
- Very low frequency data available
0.021 « Lynn Ewart, et.al: Underwater Transducer M aterials Resource
-0.03 m Dynamic dataforthcoming
004, « Elizabeth McLaughlin’s Sonar Freguency Characterizaton Rig
@ Hom & Shankar’stanh model for PMN
005 - Reasonablefit tolow frequency data
0.06 - Robust model offersfurther opportunities
| | | | « adding hysteresisbut not necessary at present
20 500 | 05 | 10 m Validation against L ockheed Martin data
ViVe - Shell vibration modal frequencies
Static shell displ t themi shell axisdueto bi ltage: ' f - : :
T S ot 20 1o1c6% compariansel . shell-stack displacement dueto static bias
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Stave shape at mid band, showing maximum exten-
sion and compression in fundamental mode.
extension/compression in half model. Nonuniform

Stave shape at high band, showing maximum
shell response can be seen along stave.
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Comparison of measured and smulated TVRin

water for the 2-shell stave.

Experimental Response, 2 Shell
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Comparison of measured and smulated TVRIn

water for the 12-shell stave.
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Comparison of measured and simulated admittance

in water for the 2-shell stave with cable.
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Comparison of propagation through fiberglasstow body with and without joint in shell (at top of snapshot).
Half on left iswithout joint (transmitting) and half on right iswith freejoint. Exterior water boundaries
TOW BOdy EffeCtS transmit waves out of model. L ower curves show pressure sprectrum (left) and insertion lossvsangle (right).
m Preliminary 2D study of fiberglass shell
o Insertion lossand flexural (Lamb) ! | ; | s S
\
waves ,,/\
. . . - —— Water Only
o Using measured anisotropic R |

vy \ With 0.5" Shell (Free)

properties : :
= |nsertion loss minimal 3 T
e 5-10%, increasing with thickness T
m Lamb waves can modulate transmission
e Dependson joint design "0 e T T

Angle (degrees)

o Comparetransmitting and freejoint
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